
Data Augmentation을사용한 Image Classifier Training의 Input Pipeline
Overhead분석
이하연◦1,이계원2,전병곤2

조지아공과대학교컴퓨터과학과1

서울대학교컴퓨터공학부2

ilee300@gatech.edu1 {gyewonlee, bgchun}@snu.ac.kr2

Analysis of Input Pipeline Overhead for Training Image Classifiers with Data
Augmentation

Irene Lee◦1, Gyewon Lee2, Byung-Gon Chun2

College of Computing, Georgia Institute of Technology1
Department of Computer Science and Engineering, Seoul National University2

요 약
Image classification is a popular application of deep neural networks. Data augmentation is often used to train models for

such task in order to reduce estimation error from limited number of data and to increase generalization of trained models.
However, due to the non-deterministic nature of data augmentation, preprocessed data is not reusable, leaving the input
pipeline overhead unavoidable for every iteration of training. In this work, we analyze the impact of input pipeline overhead
on training throughput of image classification models in various hardware settings. The key observations of the experiment
are that data augmentation degrades training speed, and that the degradation becomes worse as 1) the model being trained
gets smaller, 2) the CPU-GPU ratio decreases, and 3) the number of augmentation layers increases.

1. Introduction

Image classification is one of the most popular computer vision
tasks that aims at identifying and classifying an image as one of the
predefined categories. Trained image classifiers can be useful in
other tasks such as object detection/recognition and automated im-
age organization as well [5]. A technique that is often used when
training image classifiers is data augmentation. Data augmenta-
tion, as its name denotes, augments new data from the original in-
put training data set. This is done in order to increase the diver-
sity in the training set and make the model robust to potential vari-
ances in test data such as flips and rotations. There has been ac-
tive research regarding how to augment data more efficiently and
effectively [3, 4, 6, 7, 8]. One of the most recent augmentation
method, RandAugment [4], has shown an accuracy as high as 97.2
on the ImageNet data with EfficientNet-B7 model. Although the
effectiveness of data augmentation on image classification tasks
has been evaluated in many research, there has been little done
regarding the impact of data augmentation on the training speed.
Data augmentation requires CPU-intensive operations, which are
usually non-deterministic, and so its CPU overhead cannot be mit-
igated with simple caching and reusing. As such, input pipeline
overhead exists for every epoch, and this can cause the CPU to be-
come the bottleneck in the training. Because training speed is an-
other important factor to consider when training a model, we found
it necessary to evaluate the train speed degradation with data aug-
mentation in various hardware settings.

2. Background

In this section, we first go over the general procedure of training
an image classification model, and in particular data augmentation.

2.1 Training Pipeline for Image Classification Tasks

Training pipeline refers to the overall process of training a
model. There are three main stages in training pipeline: loading
the data, preprocessing the input data, and training the model. The
first step, loading, refers to reading in the input dataset stored in
the disk. If the size of the entire dataset is small enough to fit the
memory, the whole dataset can be loaded into the memory. If not,
the dataset can be loaded in batches from the disk to the memory.
Next step is preprocessing the input images. This is a necessary
step because the images have to be decoded and the input images
can be of different sizes whereas the input tensor size of the model
is usually static. There is no fixed rule for preprocessing as long as
the preprocessed images fit the input tensor size. Operations done
in this step can be both stochastic or deterministic. Some common
procedures include random crop and flip, and normalization and
standardization. Data augmentation[2.2] is often done in this step
as well. Preprocessed data is then sent for training. This final step
of the training pipeline updates the weights of the model’s param-
eters via forward propagation and then backward propagation of
resulting gradient of the weights.

2.2 Data Augmentation

Data augmentation is a technique used to artificially increase the
number of training data in order to decrease the test error. By ran-
domly applying distortions such as rotation, flip, and inversion to
the input image, the model becomes invariant to those transforma-
tions in the test data. Some existing data augmentation methods are
AutoAugment, Population Based Augmentation, RandAugment,
Mixup, and CutMix[3, 6, 4, 8, 7]. AutoAugment uses a policy
that consists of many sub-policies from which one is chosen to be
applied to each image in a mini-batch. Each sub-policy is a list
of transformations to be done for each input image. The policy
provides how often and how much each transformation should be
done. AutoAugment uses reinforcement learning to find a policy



that yields the highest validation accuracy. To mitigate the com-
putational strain of the reinforcement learning in AutoAugment,
Population Based Augmentation was developed. This augmenta-
tion uses evolutionary algorithm to find a schedule of increasing
the magnitude of the transformation being applied. RandAugment
further simplifies this task by searching only for the magnitude of
transformation. It randomly selects some number of transforma-
tions depending on the number of augmentation layers (i.e. the
number of transformations to be applied to each image). Then each
transformation is done with the same found magnitude. Mixup and
CutMix augment new images by mixing up two images from the
batch in a random fashion. The former randomly interpolates be-
tween two images and also between the selected images’ output.
For example, if two images are mixed up with .3 interpolation,
then the output would be 0.3 and 0.7 for each. Similarly, CutMix
cuts and pastes one image on another with some ratio, with which
the output would be also interpolated.

3. Experiment

Because data augmentation is done in a random fashion, the op-
erations are usually done in the CPU [1, 2]. This task can be done
in parallel with the training in the GPU, but for the training to be
done, the input data needs to be preprocessed beforehand in the
CPU. Therefore, if the CPU time becomes longer than GPU, GPU
will be idle, waiting for the CPU to finish the augmentation. In
addition, due to the stochasticity, the augmented images are not
reusable. Therefore, caching is not effective, making it necessary
to perform data augmentation for every epoch. Thus, this CPU in-
tensive input pipeline overhead can become the bottleneck of train-
ing. As the popularity of data augmentation is increasing and with
proved improvements in test accuracy with its use, we found it nec-
essary to evaluate the implication of data augmentation in training
speed. We analyze the the impact of data augmentation in training
speed for different models in varying hardware settings.

3.1 Experiment Setup

The experiment is conducted with CUDA 10.2 on a single
NVIDIA Titan RTX GPU. We have chosen two convolutional neu-
ral network models: ResNet50 and MobileNetV2. The former is a
heavy 50-layer model and the latter is a light-weight 3-layer model.
These models have been selected to evaluate how the model size af-
fects the degree to which the data augmentation degrades the train-
ing speed. The training is done using ImageNet data, with the batch
size of 64 and the data type of float32. RandAugment [4] is chosen
as the augmentation strategy. Using a Docker container, we have
also controlled the number of available CPU cores to two, four, six,
and eight, among which eight is the default. We fix the number of
GPU to one. For the evaluation, we define different categories of
input pipeline as the following: Synthetic, Basic, and Preprocess-
ing + RandAugment. For Synthetic, a random tensor of the size of
the model’s input tensor is generated, and thus no preprocessing is
needed at all. Basic refers to the basic preprocessing steps exclud-
ing data augmentation. Random crop and flip, and normalization
and standardization are included in this input pipeline. Lastly, Pre-
processing + RandAugment denotes the full input pipeline that em-
bodies both the basic preprocessing and data augmentation. (This

Figure 1: The end-to-end training throughput and sole input
pipeline throughput. Because the throughput of Input pipeline only
is much greater than the rest, the graph has been cropped at maxi-
mum throughput of 500 samples per second.

Figure 2: The end-to-end training throughput of Input pipeline
alone

is abbreviated as Pre + R.A.) We have tested this category of input
pipeline with different number of augmentation layers, N .

3.2 Results

The first setup tests the end-to-end training throughput (mea-
sured in samples per second) of the two models and the input
pipeline alone in the default setting. Synthetic part is representative
of pure GPU time, as there is no preprocessing done. Although the
CPU is used to generate the random tensors, this overhead is rela-
tively low and thus negligible. This means that the throughput for
synthetic would be the benchmark for image preprocessing opti-
mization, since with input pipeline throughput greater than that will
make the GPU the bottleneck of the training process. On the other
hand, input pipeline only is representative of pure CPU time, as no
training is done and so the GPU is not used. Input pipeline only
is shows the limit CPU sets on the end-to-end throughput of the



Figure 3: MobileNetV2 end-to-end training throughput with dif-
ferent CPU-GPU ratios

Figure 4: ResNet50 end-to-end training throughput with different
CPU-GPU ratios

models. In general, when the input pipeline only throughput goes
below the throughput of synthetic for any model, its end-to-end
training throughput decreases. This is natural, since the GPU has
to wait for the preprocessed batch to come from the CPU for each
iteration. Slower CPU operation causes the GPU to wait longer,
decreasing the average throughput of the overall training pipeline.
Also, the image preprocessing becomes the bottleneck of the sys-
tem with smaller number of augmentation layers for MobileNetV2
than ResNet50. Since the pure GPU throughput is already high
enough for the smaller model, slight decrease in the CPU through-
put is enough for the CPU become the bottleneck of the overall
system. This observation can be generalized to the conclusion that
light-weight models are more susceptible to input-pipeline over-
head than heavier ones.

The next set of experiments evaluates how much data augmen-
tation influences the end-to-end throughput in different hardware
settings with varying CPU-GPU ratio. The results show that the
degree to which the training throughput degrades becomes less se-
vere as the CPU-GPU ratio increases. The main difference between
the results from ResNet50 and MobileNetV2 is that the throughput
degradation of MobileNetV2 is much more drastic than that of the
other. This is because MobileNetV2 is a much smaller model than
ResNet50, and thus more sensitive to the throughput change in the

CPU.

4. Conclusion

Data augmentation is a popular technique used to train image
classification models. It artificially increases the dataset and the
diversity in the dataset, making the model be more robust to vari-
ances such as rotations and flips. However, due to the stochas-
ticity of the technique, caching cannot be done and the CPU in-
tensive preprocessing job has to be done for every epoch. In this
paper, we evaluate the impact of input pipeline overhead posed
by data augmentation on the training throughput of image classi-
fiers in various hardware settings. Data augmentation decreases
the overall throughput of the end-to-end training, and the degra-
dation becomes worse as the number of augmentation layer in-
creases. Smaller models such as MobileNetV2 are more suscepti-
ble to throughput degradation due to data augmentation than larger
models like ResNet50. In addition, as the CPU-GPU ratio in-
creases, the degree to which the overall throughput degrades de-
creases.

5. Acknowledgement

This work was supported by Institute of Information commu-
nications Technology Planning Evaluation(IITP) grant funded by
the Korea government(MSIT) (No. 2015-0-00221, (SW 스타랩)
다양한분석을고속수행하는단일화된빅데이터스택개발)

References

[1] Pytorch: Tensors and dynamic neural networks in python
with strong gpu acceleration. https://github.com/
pytorch/pytorch.

[2] Tensorflow: An open source machine learning framework
for everyone. https://github.com/tensorflow/
tensorflow.

[3] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V.
Le. Autoaugment: Learning augmentation policies from data,
2019.

[4] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaugment:
Practical automated data augmentation with a reduced search
space, 2019.

[5] R. Golemanova. The top 5 uses of image recognition, Dec
2019.

[6] D. Ho, E. Liang, I. Stoica, P. Abbeel, and X. Chen. Population
based augmentation: Efficient learning of augmentation policy
schedules, 2019.

[7] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. Cut-
mix: Regularization strategy to train strong classifiers with lo-
calizable features, 2019.

[8] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup:
Beyond empirical risk minimization, 2018.


